Harmonic morphisms and subharmonic functions
نویسندگان
چکیده
Let M be a complete Riemannian manifold and N a complete noncompact Riemannian manifold. Let φ : M → N be a surjective harmonic morphism. We prove that if N admits a subharmonic function with finite Dirichlet integral which is not harmonic, and φ has finite energy, then φ is a constant map. Similarly, if f is a subharmonic function on N which is not harmonic and such that |df | is bounded, and if M |dφ| <∞, then φ is a constant map. We also show that if Nm (m≥ 3) has at least two ends of infinite volume satisfying the Sobolev inequality or positivity of the first eigenvalue of the Laplacian, then there are no nonconstant surjective harmonic morphisms with finite energy. For p-harmonic morphisms, similar results hold.
منابع مشابه
On the mean value property of superharmonic and subharmonic functions
Recall that a function u is harmonic (superharmonic, subharmonic) in an open set U ⊂ Rn (n ≥ 1) if u ∈ C2(U) and Δu = 0 (Δu ≤ 0,Δu ≥ 0) on U . Denote by H(U) the space of harmonic functions in U and SH(U) (sH(U)) the subset of C2(U) consisting of superharmonic (subharmonic) functions in U . If A ⊂ Rn is Lebesgue measurable, L1(A) denotes the space of Lebesgue integrable functions on A and |A| d...
متن کاملStrong Logarithmic Sobolev Inequalities for Log-Subharmonic Functions
We prove an intrinsic equivalence between strong hypercontractivity (sHC) and a strong logarithmic Sobolev inequality (sLSI) for the cone of logarithmically subharmonic (LSH) functions. We introduce a new large class of measures, Euclidean regular and exponential type, in addition to all compactly-supported measures, for which this equivalence holds. We prove a Sobolev density theorem through L...
متن کاملPiecewise Harmonic Subharmonic Functions and Positive Cauchy Transforms
We give a local characterization of the class of functions having positive distributional derivative with respect to z̄ that are almost everywhere equal to one of finitely many analytic functions and satisfy some mild nondegeneracy assumptions. As a consequence, we show that any subharmonic piecewise harmonic function satisfying these conditions locally coincides with the maximum of finitely man...
متن کاملHarmonic Morphisms between Semi-riemannian Manifolds
A smooth map f: M ! N between semi-riemannian manifolds is called a harmonic morphism if f pulls back harmonic functions (i.e., local solutions of the Laplace{Beltrami equation) on N into harmonic functions on M. It is shown that a harmonic morphism is the same as a harmonic map which is moreover horizontally weakly conformal, these two notions being likewise carried over from the riemannian ca...
متن کاملThe Classification of Harmonic Morphisms to Euclidean Space
Harmonic morphism is a smooth map between Riemannian manifolds which pulls back germs of harmonic functions to germs of harmonic functions. It may be charactrized as harmonic maps which are horizontally weakly conformal [5,9]. One task of studying harmonic morphism is constructing concrete examples; Another one is classification of all harmonic morphisms between all special manifolds (in partic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2005 شماره
صفحات -
تاریخ انتشار 2005